
� ���������
	���
��

� ���

��� ����������������� � �! "�#�������"$

%'&)(+*-,-./(1032546&+798;:=<?>@8BADCEC

F"GIH=GKJ LBMNL;HPORQ�GSM�OUTIV T
W!X�GIY5L[Z
O\V ] ^KJ L[HPOU_`GIacb LdG�Mfe9L[HgF�H[LEh5Oi_jM�OUTIV

k L[Z[_lHPOnmoM�OUTIV TBW!G X�GIY5Lqp TrhDL[a

s�t
uwv .U<U:x.y.�z!AK{ .n:|8[,58~}

�9���P���i�B�N�f���

Deutscher

Wetterdienst
MeteoSwiss

Ufficio Generale Spacio

Aero e Meteorologia

EΘNIKH

METEΩPOΛOΓIKH

ΥΠHPEΣIA

Instytucie Meteorogii i

Gospodarki Wodnej

Administratia Nationala de

Meteorologie

Agenzia Regionale per la

Protezione Ambientale dell

Piemonte

Agenzia Regionale per la Protezione

Ambientale dell Emilia-Romagna:

Servizio Idro Meteo

Centro Italiano Ricerche

Aerospaziali

Amt für GeoInformationswesen

der Bundeswehr

www.cosmo-model.org

Editor: Massimo Milelli, ARPA Piemonte
Printed at Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach am Main



Parameterization of Lakes

in Numerical Weather Prediction.

Description of a Lake Model

Dmitrii V. Mironov†

German Weather Service, Offenbach am Main, Germany

Abstract

A lake model intended for use as a lake parameterization module in numerical weather
prediction (also in climate modelling and other environmental applications) is developed.
The model is capable of predicting the vertical temperature structure and mixing condi-
tions in lakes of various depth on the time scales from a few hours to many years. It is
based on a two-layer parametric representation of the evolving temperature profile and
on the integral budget of energy for the layers in question. The structure of the strati-
fied layer between the upper mixed layer and the basin bottom, the lake thermocline, is
described using the concept of self-similarity (assumed shape) of the temperature-depth
curve. The same concept is used to describe the temperature structure of the thermally
active upper layer of bottom sediments and of the ice and snow cover. An entrainment
equation is used to compute the depth of a convectively-mixed layer. A relaxation-type
equation is used to compute the wind-mixed layer depth in stable and neutral stratifi-
cation, where a multi-limit formulation for the equilibrium mixed-layer depth accounts
for the effects of the earth’s rotation, of the surface buoyancy flux, and of the static
stability in the thermocline. Both mixing regimes are treated with due regard for the
volumetric character of solar radiation heating. Simple thermodynamic arguments are
invoked to develop the evolution equations for the ice and snow depths. In this way, the
problem of solving partial differential equations (in depth and time) for the temperature
and turbulence quantities is reduced to solving ordinary differential equations for the
time-dependent parameters that specify the evolving temperature profile. The result is
a computationally efficient bulk model that incorporates much of the essential physics.

Empirical constants and parameters of the proposed model are estimated, using in-
dependent empirical and numerical data. Importantly, they should not be re-evaluated
when the model is applied to a particular lake. The only lake-specific parameters are the
lake depth, the optical characteristics of lake water, the temperature at the bottom of the
thermally active layer of bottom sediments, and the depth of this layer. These external
parameters are not part of the model physics, however. In this way, the model does not
require re-tuning, a procedure that may improve an agreement with a limited amount of
data but should generally be avoided as it greatly reduces the predictive capacity of a
physical model.

The present report contains a brief overview of previous studies and a description of
the lake model. Results from single-column numerical experiments with the proposed
model, termed FLake, details of the implementation of FLake into the limited-area nu-
merical weather prediction model COSMO, and results from numerical experiments with
the coupled COSMO-FLake system are described elsewhere.

†Corresponding author address: Deutscher Wetterdienst, Forschung und Entwicklung, FE14, Frank-
furter Str. 135, D-63067 Offenbach am Main, Germany. Phone: +49-69-8062 2705, fax: +49-69-8062 3721,
e-mail: dmitrii.mironov@dwd.de.
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1 Introduction

Lakes significantly affect the structure of the atmospheric boundary layer and therefore the
surface fluxes of heat, water vapour and momentum. This effect has not been systematically
studied so far and is poorly understood. In most numerical weather prediction (NWP)
models, the effect of lakes is either entirely ignored or is parameterized very crudely. At
present, a large number of small-to-medium size lakes are indistinguishable sub-grid scale
features. These lakes will become resolved scale features as the horizontal resolution is
increased. Then, a physically sound model (parameterization scheme) is required to predict
the lake surface temperature and the effect of lakes on the structure and transport properties
of the atmospheric boundary layer1. Apart from being physically sound, a lake model must
meet stringent requirements of computational economy.

There are several aspects of the problem. For one thing, the interaction of the atmosphere
with the underlying surface is strongly dependent on the surface temperature and its time-
rate-of-change. It is common for NWP models to assume that the water surface temperature
can be kept “frozen” over the forecast period. That is, once the NWP model has been
initialised, the surface temperature of the grid points of the type “water” is kept constant
in time. The assumption is to some extent justified for seas and deep lakes. It is doubtful
for small-to-medium size relatively shallow lakes, where short-term variations of the surface
temperature (with a period of several hours to one day) reach several degrees. A large
number of such lakes become resolved scale features as the horizontal resolution is increased.
The use of a horizontal grid size of about three kilometres or even less will soon become a
common practice in short-range weather forecast. In NWP models with coarser resolution,
many small-to-medium size lakes remain sub-grid scale features. However, the presence of
these lakes cannot be ignored due to their aggregate effect on the grid-scale surface fluxes.
This also holds for climate models concerned with the time scales ranging from many days
to many years.

Initialisation of the water-type grid points of an NWP model often presents considerable
difficulties. In case the observational data for several water points are not available, these
points are initialised by means of interpolation (often quite sophisticated) between the near-
est water-type points for which the surface temperature is known (from satellite data or from
in situ measurements). Such procedure is not too harmful for sea points. Large horizontal
gradients of the sea surface temperature (SST) are comparatively rare, so that the interpo-
lated SST is expected to be a reasonably good approximation of the actual SST. In contrast
to open sea, lakes are enclosed water bodies of a comparatively small horizontal extent. The
lake surface temperature is a result of a complex interplay of physical processes in the lake
in question. It has little or nothing to do with the surface temperature obtained by means
of interpolation between the alien water bodies.

Another important aspect of the problem is that lakes strongly modify the structure and the
transport properties of the atmospheric boundary layer. A major outstanding question is
the parameterization of the roughness of the water surface with respect to wind and to scalar
quantities, such as potential temperature and specific humidity. A detailed consideration of
this aspect of the problem is beyond the scope of the present report.

An interest in the problem of lakes has led to the development of several lake models (param-
eterization schemes) for use in NWP and climate studies. Three-dimensional lake models

1The terms “model” and “parameterization scheme” may be used interchangeably in this context. The
term “parameterization scheme” is more often used in the NWP and climate modelling community to dis-
criminate a component (module) of a complex modelling system from its host that is referred to as an NWP
(climate) model.
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account for both vertical and horizontal transport of momentum and heat and provide de-
tailed information about the lake temperature structure. However, a very high computational
cost limits their utility to only a few large lakes, such as Lake Victoria (Song et al. 2004),
Laurentian Great Lakes (León et al. 2005), Great Slave Lake (León et al. 2007, Long et al.
2007) and Great Bear Lake (Long et al. 2007), and to research applications. The use of
three-dimensional lake models (or ocean models customised for lakes) as lake parameteri-
zation schemes in NWP and other operational applications will most likely be impossible
for some years to come. One-dimensional lake models range from the simplest one-layer
slab models to rather sophisticated turbulence closure models based on the transport equa-
tions for the second-order turbulence moments. One-layer models characterise the entire
water column by a single value of temperature, assuming a complete mixing down to the
lake bottom (Ljungemyr et al. 1996), or to the bottom of a mixed layer of a fixed depth
which may vary spatially (Goyette et al. 2000). Although this assumption results in a bulk
model that is computationally very efficient, it is an oversimplification from the physical
point of view. As most lakes are stratified over a considerable part of the year, neglecting
the lake thermocline results in large errors in the surface temperature. Second-order turbu-
lence closure models, e.g. models that carry transport equations for the turbulence kinetic
energy (TKE) and its dissipation rate (Omstedt and Nyberg 1996, Omstedt 1999, Blenck-
ner et al. 2002, Stepanenko 2005, Stepanenko et al. 2006) or for the TKE only (Tsuang et
al. 2001)2, may describe the lake thermocline with reasonable accuracy. These models are
computationally rather expensive, however. Their use to treat a large number of lakes can
hardly be afforded in operational applications. Hostetler (see Hostetler and Bartlein 1990,
Hostetler 1991, Hostetler et al. 1993, Barrette and Laprise 2005) developed a lake model that
uses an algebraic stability-dependent formulation for the turbulent heat conductivity and a
convective adjustment procedure. As a lake parameterization scheme, that lake model was
coupled to a number of atmospheric models. It enjoyed wide popularity in climate studies
(Hostetler and Benson 1990, Hostetler 1991, Hostetler and Giorgi 1992, Bates et al. 1993,
1995, Hostetler et al. 1993, 1994, Bonan 1995, Small et al. 1999). MacKay (2005) developed
a hybrid model, where the solution of the non-steady heat transfer equation on a numerical
grid is combined with the bulk treatment of the upper mixed layer following Imberger (1985)
and Spigel et al. (1986).

In the present report, a lake model capable of predicting the vertical temperature structure
in lakes of various depth on the time scales from a few hours to many years is described.
The model is based on a two-layer parameterization of the evolving temperature profile and
on the integral energy budget for the layers in question. The structure of the stratified layer
between the upper mixed layer and the basin bottom, the lake thermocline, is described
using the concept of self-similarity (assumed shape) of the temperature-depth curve. The
same concept is used to describe the temperature structure of the thermally active upper
layer of bottom sediments and of the ice and snow cover. In this way, the problem of solving
partial differential equations (in depth and time) for the temperature and turbulence quan-
tities is reduced to solving ordinary differential equations for the time-dependent parameters
that specify the temperature profile. This approach, that is based on what could be called
“verifiable empiricism”, offers a very good compromise between physical realism and com-
putational economy. In Section 2, the concept of self-similarity of the temperature profile
is outlined and a brief overview of previous studies along this line is given. A lake model is
presented in Section 3. Conclusions are presented in Section 4.

2The model of Tsuang et al. (2001) is not strictly one dimensional as it incorporates a simplified scheme
to account for horizontal advection of momentum, heat and turbulence kinetic energy.
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2 Background

2.1 The Concept of Self-Similarity of the Temperature Profile

The concept of self-similarity of the temperature profile θ(z, t) in the thermocline was put for-
ward by Kitaigorodskii and Miropolsky (1970) to describe the vertical temperature structure
of the oceanic seasonal thermocline. The essence of the concept is that the dimensionless
temperature profile in the thermocline can be fairly accurately parameterized through a
“universal” function of dimensionless depth, that is

θs(t)− θ(z, t)
∆θ(t)

= Φθ(ζ) at h(t) ≤ z ≤ h(t) + ∆h(t). (1)

Here, t is time, z is depth, θs(t) is the temperature of the upper mixed layer of depth h(t),
∆θ(t) = θs(t) − θb(t) is the temperature difference across the thermocline of depth ∆h(t),
θb(t) is the temperature at the bottom of the thermocline, and Φθ ≡ [θs(t)− θ(z, t)] /∆θ(t)
is a dimensionless “universal” function of dimensionless depth ζ ≡ [z − h(t)] /∆h(t) that
satisfies the boundary conditions Φθ(0) = 0 and Φθ(1) = 1. In what follows, the arguments
of functions dependent on time and depth are not indicated, unless it is indispensable. The
temperature profile given by Eq. (1) is illustrated in Fig. 1.

 

 

 

 h

 h+∆h

θ
s

θ
b

Figure 1: Schematic representation of the temperature profile in the upper mixed
layer and in the thermocline. See text for notation.

The idea of self-similarity of the temperature profile in the thermocline can be traced back
to the famous work of Munk and Anderson (1948). Although these authors did not present
Eq. (1) in its explicit form, the following quotation is a qualitative statement of the idea
(Munk and Anderson 1948, p. 276):
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. . . the upper layers are stirred until an almost homogeneous layer is formed,
bounded beneath by a region of marked temperature gradient, the thermo-
cline. . . . If the wind increases in intensity the thermocline moves downward,
but the characteristic shape of the temperature-depth curve remains essentially
unchanged. (Original authors’ italic.)

In this connection, the work of Ertel (1954) should be mentioned. Ertel considered the
formation and deepening of the thermocline in a fresh-water lake during the summer heating
period, using an analytical solution to the linear heat transfer equation. He defined the
thermocline (“thermische Sprungschicht” – the temperature jump layer, as termed in op.
cit.) as a layer where the vertical temperature gradient exceeds 1 K·m−1. Ertel did not
present his results in the form given by Eq. (1). He found, however, that the ratio of the
depth from the upper boundary of the thermocline to the bend point of the temperature
profile to the depth from the bend point to the bottom of the thermocline is constant. In
other words, the shape of the temperature-depth curve in the thermocline is independent of
time.

The concept of self-similarity of the temperature profile in the thermocline can be considered
as a natural extension of the concept of the temperature uniform mixed layer that has
been successfully used in geophysical fluid dynamics over several decades. Indeed, using the
mixed-layer temperature θs and its depth h as appropriate scales, the mixed-layer concept
can be expressed as θ(z, t)/θs(t) = ϑ[z/h(t)], where a dimensionless function ϑ is simply a
constant equal to one. The use of ∆θ and ∆h as appropriate scales of temperature and depth,
respectively, in the thermocline leads to Eq. (1), where Φθ is not merely a constant but a more
sophisticated function of ζ. It should be emphasised that neither the mixed-layer concept nor
the concept of self-similarity of the thermocline is well justified theoretically. Both concepts
heavily rely on empirical evidence and should therefore be considered phenomenological.
However, this phenomenological approach appears to describe the observed temperature
structure to a degree of approximation that is sufficient for many applications.

2.2 Empirical Evidence

In order to obtain an analytical approximation of the dimensionless function Φθ(ζ) in Eq. (1),
Kitaigorodskii and Miropolsky (1970) took a geometrical approach similar to what is often
referred to as the Pohlhausen method in the boundary-layer theory. They expressed Φθ as a
fourth-order polynomial in ζ and invoked five boundary conditions to specify the polynomial
coefficients. Apart from the conditions Φθ(0) = 0 and Φθ(1) = 1 that simply follow from
the definition of Φθ and ζ, they assumed neutral temperature stratification at the bottom
of the thermocline, Φ′θ(1) = 0, and a smooth matching to the temperature profile in the
underlying layer, Φ′′θ(1) = 0. Furthermore, they assumed that the temperature-depth curve
has a maximum curvature at the upper boundary of the thermocline, Φ′′′θ (0) = 0. The
resulting expression,

Φθ =
8

3
ζ − 2ζ2 +

1

3
ζ4, (2)

was tested against monthly-mean temperature profiles recorded at the ocean weather ships
“Papa” (Kitaigorodskii and Miropolsky 1970) and “Tango” (Kitaigorodskii 1970).

One more polynomial approximation of Φθ(ζ) was proposed by Arsenyev and Felzenbaum
(1977). These authors also took a geometrical approach (the Pohlhausen method) but, unlike
Kitaigorodskii and Miropolsky (1970), did not make use of the condition Φ′′′θ (0) = 0. The
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resulting third-order polynomial,

Φθ = 1− (1− ζ)3, (3)

has subsequently enjoyed wide popularity.

The concept of self-similarity of the temperature profile in the thermocline received support
through laboratory studies (Linden 1975, Voropaev 1977, Wyatt 1978). Linden (1975) mod-
ified the Kitaigorodskii and Miropolsky (1970) expression (2) in order to account for the
stable density stratification in a quiescent layer below the thermocline. He proposed the
expression (in op. cit., it is given in terms of density)

Φθ = ζ + (1− Γ)

(
5

3
ζ − 2ζ2 +

1

3
ζ4

)
, (4)

where Γ = −(∆θ/∆h)−1(∂θ/∂z)|h+∆h is the temperature gradient just below the thermocline
relative to the mean temperature gradient within the thermocline [by virtue of a smooth
matching of the temperature profile in the thermocline and in the layer below, Γ = Φ ′θ(1)].
Equation (4) revealed a good agreement with data from measurements in a laboratory tank,
where turbulence was generated by an oscillating grid.

Empirical data taken in natural conditions (Miropolsky et al. 1970, Nesterov and Kalatsky
1975, Kharkov 1977, Reshetova and Chalikov 1977, Efimov and Tsarenko 1980, Filyushkin
and Miropolsky 1981, Mälkki and Tamsalu 1985, Tamsalu and Myrberg 1998) also lent
support to the concept of self-similarity of the thermocline. However, the scatter of data
around the temperature-depth curves proved to be quite large. Reshetova and Chalikov
(1977) attempted to extend the self-similarity concept to parameterize the vertical profile of
salinity in the ocean.

Filyushkin and Miropolsky (1981) noticed that the shape of the temperature-depth curve
depends on the mixed-layer state. They proposed to differentiate between the two cases: the
mixed-layer deepening, dh/dt > 0, and its stationary state or retreat, dh/dt ≤ 0. Mälkki
and Tamsalu (1985) developed the following empirical approximations for these two cases:

Φθ =

{
1− (1− ζ)3 if dh/dt > 0
1− 4(1 − ζ)3 + 3(1 − ζ)4 if dh/dt ≤ 0.

(5)

These expressions were tested against data from measurements in the Baltic Sea (Mälkki and
Tamsalu 1985, Tamsalu and Myrberg 1998). The first line of Eq. (5) that corresponds to the
mixed-layer deepening coincides with Eq. (3) developed from simple geometrical arguments
by Arsenyev and Felzenbaum (1977). In case of the mixed-layer stationary state or retreat,
the form of the temperature-depth curve is essentially different. The temperature profiles
in the thermocline and in the mixed layer match smoothly, and the vertical temperature
gradient is a maximum within the thermocline, not at its upper boundary. Data taken in
Lake Ladoga, Russia, and Lake Sevan, Armenia, corroborated the occurrence of two types
of self-similar temperature profiles in the thermocline (Zilitinkevich 1991).

2.3 Theoretical Explanation

A plausible theoretical explanation for the observed self-similarity of the temperature profile
in the thermocline was offered in case of the mixed-layer deepening (Barenblatt 1978, Turner
1978, Shapiro 1980, Zilitinkevich et al. 1988, Zilitinkevich and Mironov 1989, Mironov 1990,
Zilitinkevich and Mironov 1992). These authors analysed the heat transfer equation

∂θ

∂t
=

∂

∂z
KH

∂θ

∂z
, (6)
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where KH is the temperature conductivity (the heat conductivity divided by the density ρ
and specific heat c of the medium in question). Introducing a vertical co-ordinate moving
with the mixed layer-thermocline interface, z ′ = z − h(t), they considered a travelling wave-
type solution to Eq. (6). Assuming constant temperatures at the upper and lower boundaries
of the thermocline, ∂θs/∂t = ∂θb/∂t = 0, Eq. (6) becomes

−ḣ dθ
dz′

=
d

dz′
KH

dθ

dz′
, (7)

where ḣ ≡ dh/dt > 0 is the rate of the mixed-layer deepening.

Barenblatt (1978) took KH to be constant and considered a solution to Eq. (7) in a half-
space z′ > 0. Using boundary conditions θ = θs at z′ = 0 and θ = θb at z′ =∞, he obtained
the solution

Φθ = 1− exp(−ḣz′/KH). (8)

Since the thermocline has an infinite thickness, the above solution cannot be recast in terms
of Φθ(ζ). However, Eq. (8) appears to be a fairly close approximation to the empirical poly-
nomials proposed by Kitaigorodskii and Miropolsky (1970) and Arsenyev and Felzenbaum
(1977) at certain values of ḣ/KH .

Turner (1978) examined both the simplest case of KH = const and a more sophisticated
case, where KH is proportional to the vertical temperature gradient,

KH = − ḣl
2

∆θ

∂θ

∂z
, (9)

l being a characteristic eddy length scale. Assuming KH ∝ −∂θ/∂z, he added the factor
ḣl2/∆θ to the r.h.s. of Eq. (9) “to be consistent dimensionally”. In support of Eq. (9),
Turner considered generation of turbulence by breaking internal gravity waves. He wrote
(Turner 1978, p. 6): “It seems likely that the energy required to produce this addition mixing
below the surface layer will be supplied by internal waves propagating into the gradient
region, and then breaking. . . . Clearly, the wave breaking and the density distribution
must be intimately linked: for a given energy level breaking will occur preferentially in
regions where the density gradient is high.” Numerical experiments with a mixed-layer model
(Kamenkovich and Kharkov 1975, Gill and Trefethen, unpublished manuscript referred to by
Turner 1978) lend some support to this idea. They show an improved fit to ocean data if the
effective temperature conductivity in the thermocline is taken proportional to the vertical
temperature (density) gradient. Taking l = const and using boundary conditions θ = θs at
z = h and θ = θb at z = h+ ∆h, and an additional condition ∂θ/∂z = 0 at z = h+ ∆h that
serves to determine l, the solution to Eqs. (7) and (9) is

Φθ = 1− (1− ζ)2, l =
1

2
∆h. (10)

Obviously, it is difficult to give preference to the above expression for Φθ(ζ) over the ex-
pressions developed by Kitaigorodskii and Miropolsky (1970) and Arsenyev and Felzenbaum
(1977), or vice versa, on purely empirical ground by virtue of a large scatter of empirical
data.

Zilitinkevich et al. (1988) pointed out that Eq. (9) is not consistent with the proposed
wave breaking mechanism of mixing in the thermocline, although the mechanism per se is
physically credible. The point is that Eq. (9) does not contain the buoyancy parameter
β = gαT , where g is the acceleration due to gravity and αT is the thermal expansion
coefficient, which must obviously be taken into account. Indeed, there would be no internal
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gravity waves and no wave breaking mechanism of mixing were it not for the density changes
associated with the temperature changes and not for the gravity that cause the buoyancy
effects in a temperature-stratified fluid. Using β, ∂θ/∂z and l as the governing parameters,
Zilitinkevich et al. (1988) invoked dimensional arguments to obtain the following expression
for the effective temperature conductivity in the thermocline:

KH = l2N, (11)

where N = (−β∂θ/∂z)1/2 is the buoyancy frequency (the constant of proportionality is
incorporated into l). It is easy to verify that Eqs. (7) and (11) subject to the same boundary
conditions as used by Turner (1978) have the following solution:

Φθ = 1− (1− ζ)3, l = 3−3/4(β∆θ)−1/4∆h3/4ḣ1/2. (12)

The above expression for the temperature profile shape function Φθ(ζ) appears to coincide
with the third-order polynomial (3) developed earlier from simple geometrical arguments by
Arsenyev and Felzenbaum (1977) and on the basis of empirical data by Mälkki and Tamsalu
(1985).

In the models of Turner (1978) and Zilitinkevich et al. (1988), the eddy length scale l was
treated as a bulk quantity characteristic of the thermocline as a whole. Zilitinkevich and
Mironov (1992, see also Zilitinkevich and Mironov 1989, and Mironov 1990) proposed to
treat l as a depth-dependent quantity. To this end, they employed the transport equation
for the turbulence kinetic energy in its stationary form,

∂e

∂t
= −∂F

∂z
− βQ− ε = 0, (13)

where e is the TKE per unit mass, F is the vertical TKE flux (the sum of the third-
order velocity correlations and the pressure-velocity correlation), Q is the vertical turbulent
temperature flux, and ε is the TKE dissipation rate. The temperature flux is also referred
to as the kinematic heat flux, that is the heat flux divided by the density ρ and specific heat
c. A calligraphic letter is used to avoid confusion with the heat flux Q = ρcQ. The following
expression that is known to hold in strongly stable layers (see e.g. Zeman and Tennekes 1977,
Brost and Wyngaard 1978, Otte and Wyngaard 2001) was used to relate the length scale to
the TKE:

l =
e1/2

N
. (14)

The problem was closed through the use of a down-gradient approximation for the fluxes,

Q = −KH
∂θ

∂z
, F = −KE

∂e

∂z
, (15)

and the Kolmogorov-Heisenberg hypothesis for the eddy exchange coefficients and the TKE
dissipation rate,

KH

CH
=
KE

CE
= le1/2, ε = Cε

e3/2

l
, (16)

where CH , CE and Cε are dimensionless constants.

Considering the problem in a half-space z ′ > 0, the travelling wave-type solution to Eqs. (7),
(13), (14), (15) and (16) subject to boundary conditions θ = θs, e = eh at z′ = 0 and θ = θb,
e = 0 at z′ =∞ is

Φθ = 1− exp(E∗ −E∗/η), 61/2 exp(−E∗)
∫ 1

η
η′2 exp(E∗/η′)dη′ = ξ. (17)



COSMO Technical Report No. 11 8

Here, η2 = e−1
h e and ξ = C

−1/2
e e

−1/2
h Nhz

′ are the dimensionless TKE and the dimensionless

vertical co-ordinate, respectively, E∗ = C−1
H (6Ce)

1/2e
−1/2
h ḣ is the dimensionless rate of the

mixed-layer deepening, eh and Nh are the TKE and the buoyancy frequency, respectively,
at the mixed layer-thermocline interface z = h, and Ce = CE(CH +Cε)

−1 is a dimensionless
constant. The solution (17) describes a family of the temperature-depth curves where the
shape of the curve depends upon E∗. At E∗ ≥ 2, the vertical temperature gradient is a max-
imum at the mixed layer-thermocline interface, z = h, whereas at E∗ < 2, the temperature
gradient is a maximum at z > h. The temperature profile given by Eq. (17) is quite similar
to the third-order polynomial (3) at certain values of E∗.

An extension of the KH = const solution to Eq. (7) was developed by Shapiro (1980). He
assumed that the mixed-layer temperature θs and the rate of the mixed-layer deepening ḣ
do not remain constant, as in the case considered by Barenblatt (1978) and Turner (1978),
but experience small-amplitude fluctuations. Then, an additional term appears on the r.h.s.

of Eq. (7), namely
〈
ḣ′′∂θ′′s/∂z

〉
, where the angle brackets denote an ensemble mean and a

double prime denotes a fluctuation therefrom. An analysis of the resulting solution showed
an increase of the temperature gradient just below the mixed layer-thermocline interface and
an overall cooling of the thermocline as compared to the case of constant θs and ḣ when the
fluctuations of θs and of ḣ are coherent.

The analytical travelling wave-type solutions considered above are conditioned by a con-
stant rate of the mixed-layer deepening and constant temperatures at the upper and lower
boundaries of the thermocline (the mean values of ḣ, θs and θb are constant although these
quantities may experience high-frequency small-amplitude fluctuations, cf. Shapiro 1980).
If these quantities are not constant but vary slowly with time, the analytical solutions are
not exact but approximate. If these quantities undergo fast changes, a travelling wave-
type solution to the heat transfer equation can no longer serve as a theoretical explanation
for the observed self-similarity of the temperature profile in the thermocline. It should be
pointed out that all the above theoretical models apply to the case of the mixed-layer deep-
ening. No theoretical explanation for the self-similarity of the temperature profile in case
of the mixed-layer stationary state or retreat has been offered so far. The self-similarity at
dh/dt ≤ 0 is based on the empirical evidence only and should therefore be considered purely
phenomenological.

2.4 Bottom Sediments

A distinctive feature of shallow lakes is a strong thermal interaction between the water body
and the bottom sediments. A sizable portion of the heat received from the atmosphere
during spring and summer can be accumulated in the thermally active upper layer of bot-
tom sediments. This heat is then returned back to the water column during autumn and
winter, leading to a hysteresis-like behaviour of the seasonal temperature cycle of the water
column-bottom sediment system. A straightforward approach to describe the evolution of
the temperature structure of bottom sediments is to use the equation of heat transfer with a
priori knowledge of the thermal diffusivity of sediments (see e.g. Gu and Stefan 1990, Fang
and Stefan 1996, 1998, and references therein). The major shortcoming of this approach is
that the thermal diffusivity is strongly dependent on the composition of the sediments and
on the amount of organic matter they contain and is, therefore, rarely well known.

Golosov and Kreiman (1992) proposed an alternative way of describing the vertical tem-
perature structure of bottom sediments. Their approach is based on a two-layer self-similar
parametric representation of the evolving temperature profile in the sediments that is concep-
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tually similar to a parametric representation of the temperature profile in the thermocline.
Observations suggest (a summary of observational studies is given in Ryanzhin 1997) that
the temperature profile in the bottom sediments has the form of a travelling thermal wave.
Typical temperature profiles in the lake bottom sediments are illustrated in Fig. 2. The wave
starts at the water-sediment interface z = D and propagates downward as the lake water
and the bottom sediments are heated during spring and summer. When heating ceases and
cooling sets in, a new wave starts at z = D. It propagates downward as the lake water and
the sediments are cooled during autumn and winter, thus closing the annual cycle. The layer
D ≤ z ≤ L, where seasonal temperature changes take place, is the thermally active layer
of bottom sediments. Importantly, a characteristic shape of the temperature-depth curve
remains approximately the same. Motivated by this empirical evidence, a two-layer para-
metric representation of the temperature profile in the bottom sediments was proposed by
Golosov and Kreiman (1992) and further developed by Golosov et al. (1998). The expression
of Golosov et al. (1998) reads

θ(z, t) =

{
θb(t)− [θb(t)− θH(t)] ΦB1(ζB1) at D ≤ z ≤ H(t)
θH(t)− [θH(t)− θL] ΦB2(ζB2) at H(t) ≤ z ≤ L. (18)

Here, θL is the (constant) temperature at the outer edge z = L of the thermally active
layer of the sediments, θH is the temperature at the depth H where the vertical temperature
gradient is zero, and ΦB1 ≡ (θb−θ)/(θb−θH) and ΦB2 ≡ (θH−θ)/(θH−θL) are dimensionless
functions of dimensionless depths ζB1 ≡ (z − D)/(H − D) and ζB2 ≡ (z − H)/(L − H),
respectively. Using empirical polynomial approximations of ΦB1(ζB1) and ΦB2(ζB2), Golosov
et al. (1998) developed a simple procedure for calculating the heat flux through the water-
sediment interface. Simulations of the seasonal cycle of temperature in the bottom sediments
of several lakes using that procedure showed a satisfactory agreement with observations
(Golosov et al. 1998, Kondratiev et al. 1998). In the present study, the approach of Golosov
and Kreiman (1992) and Golosov et al. (1998) is used to develop a simple parameterization
for calculating the heat flux through the water-bottom sediment interface. It is presented in
Section 3.3.

A plausible theoretical explanation for the observed self-similarity of the temperature profile
in bottom sediments was offered by Mironov et al. (2003). Assuming a travelling wave-type
behaviour of the temperature profile, these authors considered the temperature distribution
in the layer from the water-bottom sediment interface z = D to the depth z = H penetrated
by the wave. They showed that in the simplest case of constant temperature diffusivity KH

the heat transfer equation (6) subject to the boundary conditions ΦB1(0) = 0 and ΦB1(1) = 1
has an analytical solution in the form

ΦB1 =
ΠD

ΠD −ΠH

(
1 +

exp
(
−Eζ2

B1/4
)

ζ
1/2
B1

×

{
P

[
Wp,1/4(E/2)

Mp,1/4(E/2)
Mp,1/4(Eζ2

B1/2) −Wp,1/4(Eζ2
B1/2)

]
− ΠH

ΠD
exp(E/4)

})
. (19)

Here, E = K−1
H (H − D)dH/dt is the dimensionless rate of propagation of the thermal

wave, ΠD = K−1
H (θb − θH)−1(H − D)2dθb/dt and ΠH = K−1

H (θb − θH)−1(H − D)2dθH/dt
are the dimensionless time rates of change of the temperature at the water-sediment inter-
face z = D and of the temperature at the depth z = H penetrated by the wave, respec-
tively, M and W are the Whittaker functions (Abramowitz and Stegun 1964, Chapter 13),
p = − [2(ΠD −ΠH) +E] /4E, P = 21/4π−1/2E−1/4Γ [(2E + ΠD −ΠH)/2E], and Γ is the
Gamma function.
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Figure 2: Schematic representation of the temperature profile in bottom sediments
during periods of (a) heating and (b) cooling. Dashed curves show the initial
temperature profiles, i.e. the profiles developed towards the end of the previous
period of cooling (heating). See text for details.
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The solution (19) is conditioned by a constant dimensionless propagation rate of the thermal
wave and constant time rates of change of the temperature at the water-sediment interface
and of the temperature at the depth penetrated by the wave. In case E, ΠD and ΠH

are not constant but vary slowly with time, Eq. (19) is not exact but approximate. If
these quantities undergo fast changes, the analytical solution (19) can no longer serve as a
theoretical explanation for the observed self-similarity of the temperature profile in bottom
sediments. Equation (19) appears to compare favourably with data from measurements in
a number of lakes, with data from laboratory experiments and with a phenomenological
polynomial approximation of the temperature profile in bottom sediments developed by
Golosov et al. (1998) on the basis of empirical data.

2.5 Ice and Snow Cover

Many lakes are frozen over a considerable part of the year so that the atmosphere does not
directly communicate with the lake water. The atmosphere-lake interaction occurs through
the air-ice or, if snow is present, through the air-snow interface. An ice-snow model is
therefore required to predict the surface temperature. Use of sophisticated ice models with
rheology is a standard practice in climate modelling where the integration is performed over
many decades. For NWP and related applications, a sophisticated dynamic-thermodynamic
ice model is not required (and most often cannot be afforded because of its high computation
cost). A simplified thermodynamic model is usually sufficient. Such model is developed in
Section 3.4. As regards the thermodynamics of ice and snow, the model is broadly similar
to most other models developed to date (summaries are given by e.g. Leppäranta 1993, and
Launiainen and Cheng 1998). A distinguishing feature of the present model is the treatment
of the heat transfer through the ice and snow. Most currently used ice and snow models carry
the heat transfer equation that is solved on a finite-difference grid where the number of grid
points and the grid spacing differ with the application. Here the integral, or bulk, approach
is used. It is based on a parametric representation of the temperature profile within ice and
snow and on the integral heat budgets of the ice and snow layers.

2.6 Applications

A number of computationally efficient models based on the self-similar representation of the
temperature profile have been developed and successfully applied to simulate the evolution
of the mixed layer and seasonal thermocline in the ocean (Kitaigorodskii and Miropolsky
1970, Miropolsky 1970, Kitaigorodskii 1970, Kamenkovich and Kharkov 1975, Arsenyev
and Felzenbaum 1977, Kharkov 1977, Filyushkin and Miropolsky 1981). Filyushkin and
Miropolsky (1981) assumed that both the temperature profile and the profile of the vertical
heat flux in the thermocline can be represented in a self-similar form. We return to this issue
in Section 3.2.1. The self-similarity concept has also been applied to model the atmospheric
convectively mixed layer capped by the temperature inversion (Deardorff 1979, Fedorovich
and Mironov 1995, Mironov 1999, Pénelon et al. 2001).

Models of the seasonal cycle of temperature and mixing in medium-depth fresh-water lakes,
based on the self-similar representation of the evolving temperature profile, have been devel-
oped and successfully applied by Zilitinkevich and Rumyantsev (1990), Zilitinkevich (1991),
Mironov et al. (1991), Zilitinkevich et al. (1992), Mironov (1992), Golosov et al. (1998),
and Kondratiev et al. (1998). An attempt has been made to apply the above self-similarity
concept to shallow lakes and to consider short-term (diurnal) variations of temperature
and mixing conditions (Kirillin 2001a, 2001b). As different from the ocean and the atmo-



COSMO Technical Report No. 11 12

sphere, where the thermocline (capping inversion) is underlain (overlain) by a deep stably or
neutrally stratified quiescent layer, the above lake models assume a two-layer temperature
structure, where the thermocline extends from the bottom of the mixed layer down to the
basin bottom. This assumption is fair for most lakes, except for very deep lakes such as Lake
Baikal.

3 Model Description

In this section, a lake model based on a self-similar parametric representation (assumed
shape) of the evolving temperature profile in the water column, in the bottom sediments,
and in the ice and snow is developed. The same basic concept is used to describe the
temperature structure of the four media in question (snow, ice, water, and bottom sediment).
The lake model proposed by Mironov et al. (1991) is taken as a starting point. It is modified
and further developed to account for specific features of shallow lakes and to consider both
seasonal and diurnal variations of temperature and mixing conditions. The lake water is
treated as a Boussinesq fluid, i.e. the water density is taken to be constant equal to the
reference density except when it enters the buoyancy term in the TKE equation and the
expression for the buoyancy frequency. The other thermodynamic parameters are considered
constant except for the snow density and the snow heat conductivity (see Section 3.5.3 and
Appendix B).

The model presented in what follows is a bulk model. It incorporates the heat budget equa-
tions for the layers in question. An entrainment equation for the depth of a convectively-
mixed layer and a relaxation-type equation for the depth of a wind-mixed layer in stable and
neutral stratification are developed on the basis of the TKE equation integrated over the
mixed layer. Simple thermodynamic arguments are invoked to develop the evolution equa-
tions for the ice and snow depths. The resulting system of ordinary differential equations for
the time-dependent prognostic quantities that characterise the evolving temperature profile,
see Figs. 3 and 4, is closed with algebraic (or transcendental) equations for diagnostic quanti-
ties, such as the heat flux through the lake bottom and the equilibrium mixed-layer depth in
stable or neutral stratification. Finally, we end up with a lake model that is computationally
very efficient but still incorporates much of the essential physics.

3.1 Equation of State

We utilise the quadratic equation of state of the fresh water,

ρw = ρr

[
1− 1

2
aT (θ − θr)2

]
, (20)

where ρw is the water density, ρr = 999.98 ≈ 1.0 · 103 kg·m−3 is the maximum density of the
fresh water at the temperature θr = 277.13 K, and aT = 1.6509 · 10−5 K−2 is an empirical
coefficient (Farmer and Carmack 1981). Equation (20) is the simplest equation of state that
accounts for the fact that the temperature of maximum density of the fresh water exceeds
its freezing point θf = 273.15 K. According to Eq. (20), the thermal expansion coefficient
αT and the buoyancy parameter β depend on the water temperature,

β(θ) = gαT (θ) = gaT (θ − θr), (21)

where g = 9.81 m·s−2 is the acceleration due to gravity.
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Figure 3: Schematic representation of the temperature profile in the mixed layer, in
the thermocline, and in the thermally active layer of bottom sediments. The evolv-
ing temperature profile is specified by several time-dependent quantities. These
are the mixed-layer temperature θs(t) and its depth h(t), the temperature θb(t) at
the water-bottom sediment interface, the shape factor Cθ(t) with respect to the
temperature profile in the thermocline, the temperature θH(t) at the lower bound-
ary of the upper layer of bottom sediments penetrated by the thermal wave, and
the depth H(t) of that layer. The temperature θL at the outer edge z = L of the
thermally active layer of bottom sediments is constant.



COSMO Technical Report No. 11 14

 

 

 θ
s
(t) θ

b
(t)θ

I
(t)θ

S
(t)

(b)

θ
L

θ
H

(t)

 h(t)

 D

 L

 H(t)

 −H
I
(t)

 −H
I
(t)−H

S
(t)

Snow

Ice

Water

Sediment

Figure 4: Apart from θs(t), h(t), θb(t), Cθ(t), θH(t), and H(t) (see Fig. 3), four
additional quantities are computed in case the lake is covered by ice and snow.
These are the temperature θS(t) at the air-snow interface, the temperature θI(t) at
the snow-ice interface, the snow depth HS(t), and the ice depth HI(t).
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3.2 The Water Temperature

3.2.1 Parameterization of the Temperature Profile and the Heat Budget

We adopt the following two-layer parameterization of the vertical temperature profile:

θ =

{
θs at 0 ≤ z ≤ h
θs − (θs − θb)Φθ(ζ) at h ≤ z ≤ D, (22)

where Φθ ≡ (θs − θ) / (θs − θb) is a dimensionless function of dimensionless depth
ζ ≡ (z − h) / (D − h). The thermocline extends from the mixed-layer outer edge z = h
to the basin bottom z = D.

According to Eq. (22), h, D, θs, θb, and the mean temperature of the water column,

θ ≡ D−1
∫D

0 θdz, are related through

θ = θs − Cθ(1− h/D)(θs − θb), (23)

where

Cθ =

∫ 1

0
Φθ(ζ)dζ (24)

is the shape factor.

The parameterization of the temperature profile (22) should satisfy the heat transfer equation

∂

∂t
(ρcθ) = − ∂

∂z
(Q+ I), (25)

where Q is the vertical turbulent heat flux, and I is the heat flux due to solar radiation.

Integrating Eq. (25) over z from 0 to D yields the equation of the total heat budget,

D
dθ

dt
=

1

ρwcw
[Qs + Is −Qb − I(D)] , (26)

where cw is the specific heat of water, Qs and Is are the values of Q and I, respectively, at
the lake surface, and Qb is the heat flux through the lake bottom. The radiation heat flux Is
that penetrates into the water is the surface value of the incident solar radiation flux from
the atmosphere multiplied by 1−αw, αw being the albedo of the water surface with respect
to solar radiation. The surface flux Qs is a sum of the sensible and latent heat fluxes and
the net heat flux due to long-wave radiation at the air-water interface.

Integrating Eq. (25) over z from 0 to h yields the equation of the heat budget in the mixed
layer,

h
dθs
dt

=
1

ρwcw
[Qs + Is −Qh − I(h)] , (27)

where Qh is the heat flux at the bottom of the mixed layer.

Given the surface fluxes Qs and Is (these are delivered by the driving atmospheric model
or are known from observations), and the decay law for the flux of solar radiation (Section
3.5.3), Eqs. (23), (26) and (27) contain seven unknowns, namely, h, θ, θs, θb, Qh, Qb and Cθ.
The mixed layer depth, the bottom heat flux and the shape factor are considered in Section
3.2.2, Section 3.3 and Section 3.5.1, respectively. One more relation is required. Following
Filyushkin and Miropolsky (1981, see also Tamsalu et al. 1997, and Tamsalu and Myrberg
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1998), we assume that in case of the mixed layer deepening, dh/dt > 0, the profile of the
vertical turbulent heat flux in the thermocline can be represented in a self-similar form. That
is

Q = Qh − (Qh −Qb)ΦQ(ζ) at h ≤ z ≤ D, (28)

where the shape function ΦQ satisfies the boundary conditions ΦQ(0) = 0 and ΦQ(1) =
1. Equation (28) is suggested by the travelling wave-type solution to the heat transfer
equation. If the mixed layer and the thermocline develop on the background of a deep stably
or neutrally stratified quiescent layer (this situation is encountered in the ocean and in
the atmosphere), the travelling wave-type solution shows that both the temperature profile
and the profile of the turbulent heat flux are described by the same shape function, i.e.
Φθ(ζ) = ΦQ(ζ). In lakes, the thermocline usually extends from the bottom of the mixed
layer down to the basin bottom. In this case, the travelling wave-type solution to the heat
transfer equation also suggests self-similar profiles of the temperature and of the heat flux,
however the relation between the shape functions Φθ(ζ) and ΦQ(ζ) is different. The issue is
considered in Appendix A.

Integrating Eq. (25) with due regard for Eqs. (22) and (28) over z ′ from h to z > h, then
integrating the resulting expression over z from h to D, we obtain

1

2
(D − h)2 dθs

dt
− d

dt

[
Cθθ(D − h)2(θs − θb)

]
=

1

ρwcw

[
CQ(D − h)(Qh −Qb) + (D − h)I(h) −

∫ D

h
I(z)dz

]
, (29)

where

CQ =

∫ 1

0
ΦQ(ζ)dζ (30)

is the shape factor with respect to the heat flux, and

Cθθ =

∫ 1

0
dζ

∫ ζ′

0
Φθ(ζ

′)dζ ′ (31)

is the dimensionless parameter. The analysis in Appendix A suggests that CQ = 2Cθθ/Cθ.

In case of the mixed-layer stationary state or retreat, dh/dt ≤ 0, Eq. (28) is not justified.
Then, the bottom temperature is assumed to be “frozen”,

dθb
dt

= 0. (32)

If h = D, then θb = θs = θ and the mean temperature is computed from Eq. (26).

3.2.2 The Mixed-Layer Depth

Convection
Convective deepening of the mixed layer is described by the entrainment equation. This
equation is conveniently formulated in terms of the dependence of the so-called entrainment
ratio A on one or the other stratification parameter. The entrainment ratio is a measure of
the entrainment efficiency. It is commonly defined as a negative of the ratio of the heat flux
due to entrainment at the bottom of the mixed layer, Qh, to an appropriate heat flux scale,
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Q∗. In case of convection driven by the surface flux, where the forcing is confined to the
boundary, the surface heat flux Qs serves as an appropriate flux scale. This leads to the now
classical Deardorff (1970a, 1970b) convective scaling, where h and |hβQs/(ρwcw)|1/3 serve
as the scales of length and velocity, respectively.

The Deardorff scaling is unsuitable for convective flows affected by the solar radiation heating
that is not confined to the boundary but is distributed over the water column. If the mixed-
layer temperature exceeds the temperature of maximum density, convective motions are
driven by surface cooling, whereas radiation heating tends to stabilise the water column,
arresting the mixed layer deepening (Soloviev 1979, Mironov and Karlin 1989). Such regime
of convection is encountered in the oceanic upper layer (e.g. Kraus and Rooth 1961, Soloviev
and Vershinskii 1982, Price et al. 1986) and in fresh-water lakes (e.g. Imberger 1985). If the
mixed-layer temperature is below that of maximum density, volumetric radiation heating
leads to de-stabilisation of the water column and thereby drives convective motions. Such
regime of convection is encountered in fresh-water lakes in spring. Convective mixing often
occurs under the ice, when the snow cover overlying the ice vanishes and solar radiation
penetrates down through the ice (e.g. Farmer 1975, Mironov and Terzhevik 2000, Mironov
et al. 2002, Jonas et al. 2003).

In order to account for the vertically distributed character of the radiation heating, we make
use of a generalised convective heat flux scale

Q∗ = Qs + Is + I(h)− 2h−1

∫ h

0
I(z)dz, (33)

and define the convective velocity scale and the entrainment ratio as

w∗ = [−hβ(θs)Q∗/(ρwcw)]1/3 , A = −Qh/Q∗, (34)

respectively. In order to specify A, we employ the entrainment equation in the form

A+
Cc2
w∗

dh

dt
= Cc1, (35)

where Cc1 and Cc2 are dimensionless constants (the estimates of these and other empirical
constants of the model are discussed in Section 3.5.2 and summarised in Appendix B). The
second term on the l.h.s. of Eq. (35) is the spin-up correction term introduced by Zilitinkevich
(1975). This term prevents an unduly fast growth of h when the mixed layer is shallow. If
the spin-up term is small, Eq. (35) reduces to a simple relation A = Cc1 that proved to
be a sufficiently accurate approximation for a large variety of geophysical and laboratory
convective flows (Zilitinkevich 1991).

Equations (33), (34) and (35) should be used to compute the mixed-layer depth when the
buoyancy flux B∗ = β(θs)Q∗/(ρwcw) is negative. The quantity −hB∗ ≡ w3

∗ is a measure of
the generation rate of the turbulence kinetic energy in a layer of depth h by the buoyancy
forces (see a discussion in Mironov et al. 2002). A negative B∗ indicates that the TKE is
generated through convective instability. Otherwise, the TKE is lost to work against the
gravity. This occurs when the density stratification is stable. A different formulation for the
mixed-layer depth is then required.

Stable and Neutral Stratification
Mironov et al. (1991) used a diagnostic equation to determine the wind-mixed layer depth
in stable and neutral stratification. That is, h was assumed to adjust to external forcing on
a time scale that does not exceed the model time step. This assumption is fair if seasonal
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changes of temperature and mixing conditions are considered and the model time step is
typically one day. The assumption is likely to be too crude to consider diurnal variations.
To this end, we utilise a relaxation-type rate equation for the depth of a stably or neutrally
stratified wind-mixed layer. It reads

dh

dt
=
he − h
trh

. (36)

Here, he is the equilibrium mixed-layer depth, and trh is the relaxation time scale given by

trh =
he

Crhu∗
, (37)

where u∗ = |τs/ρwcw|1/2 is the surface friction velocity, τs being the surface stress, and Crh is
a dimensionless constant. A rate equation (36) with the relaxation time scale proportional to
the reciprocal of the Coriolis parameter [that is a particular case of Eq. (37) with he specified
through Eq. (38)] was favourably tested by Zilitinkevich et al. (2002) and Zilitinkevich and
Baklanov (2002) against data from atmospheric measurements and was recommended for
practical use.

In order to specify he, we make use of a multi-limit formulation for the equilibrium depth of
a stably or neutrally stratified boundary layer proposed by Zilitinkevich and Mironov (1996).
Based on the analysis of the TKE budget, these authors proposed a generalised equation
for the equilibrium boundary-layer depth that accounts for the combined effects of rota-
tion, surface buoyancy flux and static stability at the boundary-layer outer edge [Eq. (30)
in op. cit.]. That equation reduces to the equations proposed earlier by Rossby and Mont-
gomery (1935), Kitaigorodskii (1960) and Kitaigorodskii and Joffre (1988) in the limiting
cases of a truly neutral rotating boundary layer, the surface-flux-dominated boundary layer,
and the imposed-stability-dominated boundary layer, respectively. It also incorporates the
Zilitinkevich (1972) and the Pollard, Rhines and Thompson (1973) equations that describe
the intermediate regimes, where the effects of rotations and stratification essentially interfere
and are roughly equally important. We adopt a simplified version of the Zilitinkevich and
Mironov (1996) equation [Eq. (26) in op. cit.] that does not incorporate the Zilitinkevich
(1972) and the Pollard et al. (1973) scales. It reads

(
fhe
Cnu∗

)2

+
he
CsL

+
Nhe
Ciu∗

= 1, (38)

where f = 2Ω sinφ is the Coriolis parameter, Ω = 7.29 · 10−5 s−1 is the angular velocity
of the earth’s rotation, φ is the geographical latitude, L is the Obukhov length, N is the
buoyancy frequency below the mixed layer, and Cn, Cs and Ci are dimensionless constants. A
generalised formulation for the Obukhov length is used, L = u3

∗/(βQ∗/ρwcw), that accounts
for the vertically distributed character of the solar radiation heating (note that the von
Kármán constant is not included into the definition of L). A mean-square buoyancy frequency

in the thermocline, N =
[
(D − h)−1

∫ D
h N2dz

]1/2
, is used as an estimate of N in Eq. (38).

One further comment is in order. Zilitinkevich et al. (2002, 2007) reconsidered the problem
of the equilibrium stable boundary-layer depth. They concluded that the Zilitinkevich (1972)
scale, |u∗L/f |1/2, and the Pollard et al. (1973) scale, u∗/|Nf |1/2, are the appropriate depth
scales for the boundary layers dominated by the surface buoyancy flux and by the static
stability at the boundary-layer outer edge, respectively. In other words, he depends on the
Coriolis parameter no matter how strong the static stability. This is different from Eq. (38)
where the limiting scales are L and u∗/N , respectively. The problem was further examined
by Mironov and Fedorovich (2008). They showed that the above scales are particular cases of
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more general power-law formulations, namely, h/L ∝ (|f |L/u∗)−p and hN/u∗ ∝ (|f |/N)−q

for the boundary layers dominated by the surface buoyancy flux and by the static stability
at the boundary-layer outer edge, respectively. The Zilitinkevich (1972) and Pollard et al.
(1973) scales are recovered with p = 1/2 and q = 1/2, whereas the Kitaigorodskii (1960)
and Kitaigorodskii and Joffre (1988) are recovered with p = 0 and q = 0. Scaling arguments
are not sufficient to fix the exponents p and q. They should be evaluated on the basis of
experimental data. Available data from observations and from large-eddy simulations are
uncertain. They do not make it possible to evaluate p and q to sufficient accuracy and to con-
clusively decide between the alternative formulations for the boundary-layer depth. Leaving
the evaluation of p and q for future studies, we utilise Eq. (38). This simple interpolation
formula is consistent with the complexity of the present lake model and is expected to be a
sufficiently accurate approximation for most practical purposes.

One more limitation on the equilibrium mixed-layer depth should be taken into account.
Consider the situation where the mixed-layer temperature exceeds the temperature of maxi-
mum density, the surface flux Qs is negative, whereas the heat flux scale Q∗ given by Eq. (33)
is positive (this can take place if −Qs/Is < 1). A positive Q∗ indicates the the mixed layer
of depth h is statically stable. A negative Qs, however, indicates that convective instability
should take place, leading to the development of a convectively mixed layer whose deepening
is arrested by the solar radiation heating. The equilibrium depth hc of such mixed layer is
given by (see e.g. Mironov and Karlin 1989)

Q∗(hc) = Qs + Is + I(hc)− 2h−1
c

∫ hc

0
I(z)dz = 0. (39)

This regime of convection is encountered on calm sunny days. If the wind suddenly ceases,
Eq. (38) predicts a very shallow stably-stratified equilibrium mixed layer to which the mixed
layer of depth h > he should relax. In fact, however, the mixed layer would relax towards a
convectively mixed layer whose equilibrium depth is given by Eq. (39). In order to account
for this constraint, we require that he ≥ hc if Q∗(h) > 0 and θs > θr.

3.3 The Water - Bottom Sediment Interaction

3.3.1 Parameterization of the Temperature Profile and the Heat Budget

We adopt a two-layer parametric representation, Eq. (18), of the evolving temperature profile
in the thermally active layer of bottom sediments proposed by Golosov et al. (1998). The
parameterization (18) should satisfy the heat transfer equation (25), where the heat flux
Q is due to molecular heat conduction and the bottom sediments are opaque to radiation.
Integrating Eq. (25) over z from z = D to z = H with due regard for Eq. (18), we obtain

d

dt
[(H −D)θb −CB1(H −D)(θb − θH)]− θH

dH

dt
=

1

ρwcw
[Qb + I(D)] , (40)

where the heat flux at z = H is zero by virtue of the zero temperature gradient there.

Integrating Eq. (25) over z from z = H to z = L, we obtain

d

dt
[(L−H)θH − CB2(L−H)(θH − θL)] + θH

dH

dt
= 0, (41)

where the heat flux at z = L (the geothermal heat flux) is neglected.

The shape factors CB1 and CB2 are given by

CB1 =

∫ 1

0
ΦB1(ζB1)dζB1, CB2 =

∫ 1

0
ΦB2(ζB2)dζB2. (42)
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3.3.2 Heat Flux through the Bottom

The bottom heat flux Qb is due to molecular heat conduction through the uppermost layer
of bottom sediments. It can be estimated as the product of the negative of the temperature
gradient at z = D+ 0 and the molecular heat conductivity. The uppermost layer of bottom
sediments is saturated with water. Its water content typically exceeds 90% and its physical
properties, including the heat conductivity, are very close to the properties of the lake water.
Then, the heat flux through the lake bottom is given by

Qb = −κw
θH − θb
H −D Φ′B1(0), (43)

where κw is the molecular heat conductivity of water. This relation closes the problem.

It should be stressed that Eqs. (40), (41) and (43) do not contain the molecular heat con-
ductivity of bottom sediments, a quantity that is rarely known to a satisfactory degree of
precision. It is through the use of the integral (bulk) approach, based on the parameterization
(18) of the temperature profile, that the molecular heat conductivity of bottom sediments is
no longer needed.

3.4 Ice and Snow Cover

In this section, a two-layer thermodynamic (no rheology) model of the ice and snow cover is
described. It is based on a self-similar parametric representation of the temperature profile
within ice and snow and on the integral heat budgets of the ice and snow layers. The approach
is, therefore, conceptually similar to the approach used above to describe the temperature
structure of the mixed layer, of the lake thermocline, and of the thermally active layer of
bottom sediments. Notice that the assumption about the shape of the temperature profile
within the ice, the simplest of which is the linear profile, is either explicit or implicit in a
number of ice models developed to date. A model of ice growth based on a linear temperature
distribution was proposed by Stefan as early as 1891.

3.4.1 Parameterization of the Temperature Profile and the Heat Budget

We adopt the following parametric representation of the evolving temperature profile within
ice and snow:

θ(z, t) =

{
θf − [θf − θI(t)]ΦI(ζI) at −HI(t) ≤ z ≤ 0
θI(t)− [θI(t)− θS(t)]ΦS(ζS) at −[HI(t) +HS(t)] ≤ z ≤ −HI(t).

(44)

Here, z is the vertical co-ordinate (positive downward) with the origin at the ice-water
interface, HI is the ice thickness, HS is the thickness of snow overlaying the ice, θf is the
fresh-water freezing point, θI is the temperature at the snow-ice interface, and θS is the
temperature at the air-snow interface. Notice that the freezing point of salt water is a
decreasing function of salinity. A model that accounts for this dependence and is applicable
to the ice over salt lakes or seas is presented by Mironov and Ritter (2004). Dimensionless
universal functions ΦI ≡ (θf − θ)/(θf − θI) and ΦS ≡ (θI − θ)/(θI − θS) of dimensionless
depths ζI ≡ −z/HI and ζS ≡ −(z + HI)/HS , respectively, satisfy the boundary conditions
ΦI(0) = 0, ΦI(1) = 1, ΦS(0) = 0, and ΦS(1) = 1.

According to Eq. (44), the heat fluxes through the ice, QI , and through the snow, QS, due
to molecular heat conduction are given by

QI = −κi
θf − θI
HI

dΦI

dζI
, QS = −κs

θI − θS
HS

dΦS

dζS
, (45)
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where κi and κs are the heat conductivities of ice and snow, respectively.

The parameterization of the temperature profile (44) should satisfy the heat transfer equation
(25). Integrating Eq. (25) over z from the air-snow interface z = −(HI +HS) to just above
the ice-water interface z = −0 with due regard for the parameterization (44), we obtain the
equation of the heat budget of the snow-ice cover,

d

dt
{ρiciHI [θf − CI(θf − θI)] + ρscsHS [θI − CS(θI − θS)]} − ρscsθS

d

dt
(HI +HS) =

Qs + Is − I(0) + κi
θf − θI
HI

Φ′I(0). (46)

Here, ρi and ρs are the densities of ice and of snow, respectively, ci and cs are specific heats
of these media, and Qs and Is are the values of Q and I, respectively, at the air-snow or, if
snow is absent, at the air-ice interface. The radiation heat flux Is that penetrates into the
interior of snow-ice cover is the surface value of the incident solar radiation flux from the
atmosphere multiplied by 1−αi, αi being the albedo of the ice or snow surface with respect
to solar radiation. The dimensionless parameters CI and CS , the shape factors, are given by

CI =

∫ 1

0
ΦI(ζI)dζI , CS =

∫ 1

0
ΦS(ζS)dζS . (47)

The heat flux at the snow-ice interface is assumed to be continuous, that is

−κi
θf − θI
HI

Φ′I(1) = −κs
θI − θS
HS

Φ′S(0). (48)

Equations (46) and (48) serve to determine temperatures at the air-snow and at the snow-ice
interfaces, when these temperatures are below the freezing point, i.e. when no melting at the
snow surface (ice surface, when snow is absent) takes place. During the snow (ice) melting
from above, the temperatures θS and θI remain equal to the freezing point θf , and the heat
fluxes QS and QI are zero.

3.4.2 Snow and Ice Thickness

The equations governing the evolution of the snow thickness and of the ice thickness are
derived from the heat transfer equation (25) that incorporates an additional term on its right-
hand side, namely, the term fM (z)LfdM/dt that describes the rate of heat release/consump-
tion due to accretion/melting of snow and ice. Here, M is the mass of snow or ice per unit
area, Lf is the latent heat of fusion, and fM (z) is a function that satisfies the normalization

conditions
∫ HI+HS
HI

fM(z)dz = 1 and
∫ HI

0 fM(z)dz = 1 for snow and ice, respectively.

The accumulation of snow is not computed within the ice-snow model. The rate of snow
accumulation is assumed to be a known time-dependent quantity that is provided by the
atmospheric model or is known from observations. Then, the evolution of the snow thickness
during the snow accumulation and no melting is computed from

dρsHS

dt
=

(
dMS

dt

)

a

, (49)

where MS = ρsHS is the snow mass per unit area, and (dMS/dt)a is the (given) rate of snow
accumulation.
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When the temperature θI at the upper surface of the ice is below the freezing point θf ,
the heat conduction through the ice causes the ice growth. This growth is accompanied
by a release of heat at the lower surface of the ice that occurs at a rate LfdMI/dt, where
MI = ρiHI is the ice mass per unit area. The normalization function fM is equal to zero
throughout the snow-ice cover except at the ice-water interface where fM = δ(0), δ(z) being
the Dirac delta function. Integrating Eq. (25) from z = −0 to z = +0 with due regard for
this heat release yields the equation for the ice thickness. It reads

Lf
dρiHI

dt
= Qw + κi

θf − θI
HI

Φ′I(0), (50)

where Qw is the heat flux in the near-surface water layer just beneath the ice. If the r.h.s. of
Eq. (50) is negative, i.e. the negative of the heat flux in the water, Qw, exceeds the negative
of the heat flux in the ice, QI |z=0, ice ablation takes place.

As the atmosphere heats the snow surface, the surface temperature eventually reaches the
freezing point and the snow and ice melting sets in. This process is accompanied by a
consumption of heat at rates LfdρsHS/dt and LfdρiHI/dt for snow and ice, respectively.
Notice that the exact form of the normalization function fM is not required by virtue of the
normalization conditions considered above. Integrating Eq. (25) from z = −(HI +HS)− 0
to z = −HI with due regard for the heat loss due to snow melting and adding the (given)
rate of snow accumulation yields the equation for the snow thickness,

Lf
dρsHS

dt
= −(Qs + Is) + I(−HI) + Lf

(
dMS

dt

)

a

+ csθfHS
dρs
dt
, (51)

where the last term on the r.h.s. originates from the dependence of the snow density on the
snow depth (see Section 3.5.3).

Integrating Eq. (25) from z = −HI to z = +0 with due regard for the heat loss due to ice
melting yields the equation for the ice thickness,

Lf
dρiHI

dt
= Qw + I(0) − I(−HI), (52)

If the ice melts out earlier than snow, the snow depth is instantaneously set to zero.

3.4.3 The Temperature Profile beneath the Ice

The simplest assumption is to keep the temperature profile unchanged over the entire period
of ice cover. This assumption is fair for deep lakes, where the heat flux through the bottom
is negligibly small. In shallow lakes, this assumption may lead to an underestimation of the
mean temperature. The heat accumulated in the thermally active upper layer of bottom
sediments during spring and summer is returned back to the water column during winter,
leading to an increase of the water temperature under the ice. The water temperature under
the ice can also increase due to heating by solar radiation penetrating down through the
ice. The thermodynamic regimes encountered in ice-covered lakes are many and varied.
Their detailed description requires a set of sophisticated parameterizations. The use of such
parameterizations in the framework of the present lake model is, however, hardly justified.
The point is that it is the snow (ice) surface temperature that communicates information to
the atmosphere, the water temperature is not directly felt by the atmospheric surface layer.
It is, therefore, not vital that the temperature regimes in ice-covered lakes be described in
great detail. Only their most salient features should be accounted for, first of all, the heat
budget of the water column.
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When the lake is ice-covered, the temperature at the ice-water interface is fixed at the freezing
θs = θf . In case the bottom temperature is less than the temperature of maximum density,
θb < θr, the mixed-layer depth and the shape factor are kept unchanged, dh/dt = 0 and
dCθ/dt = 0, the mean temperature θ is computed from Eq. (26) and the bottom temperature
θb is computed from Eq. (23). If the entire water column appears to be mixed at the moment
of freezing, i.e. h = D and θs = θ = θb, the mixed layer depth is reset to zero, h = 0, and
the shape factor is set to its minimum value, Cθ = 0.5 (see Section 3.5.1).

The heat flux from water to ice is estimated from

Qw = −κw
θb − θs
D

, (53)

if h = 0, and Qw = 0 otherwise. Notice that the estimate of Qw given by Eq. (53) and
the shape factor Cθ = 0.5 correspond to a linear temperature profile over the entire water
column. A linear profile is encountered in ice-covered shallow lakes when θb < θr and the
heat flux is from the bottom sediments to the lake water.

As the bottom temperature reaches the temperature of maximum density, convection due
to bottom heating sets in. To describe this regime of convection in detail, a convectively
mixed layer whose temperature is close to θr, and a thin layer adjacent to the bottom, where
the temperature decreases sharply from θb > θr to θr, should be thoroughly considered. We
neglect these peculiarities of convection due to bottom heating and adopt a simpler model
where the bottom temperature is fixed at the temperature of maximum density, θb = θr.
The mean temperature θ is computed from Eq. (26). If h > 0, the shape factor Cθ is kept
unchanged, and the mixed-layer depth is computed from Eq. (23). As the mixed-layer depth
approaches zero, Eq. (23) is used to compute the shape factor Cθ that in this regime would
increase towards its maximum value Cmax

θ . The heat flux from water to ice is estimated
from

Qw = −κw
θb − θs
D

max
[
1,Φ′θ(0)

]
, (54)

if h = 0, and Qw = 0 otherwise.

One more regime of convection is often encountered in ice-covered lakes. In late spring, the
snow overlying the ice vanishes and solar radiation penetrates down through the ice. As the
mixed-layer temperature is below that of maximum density, the volumetric radiation heating
leads to de-stabilisation of the water column and thereby drives convective motions. Such
regime of convection was analysed by Farmer (1975), Mironov and Terzhevik (2000), Mironov
et al. (2002), and Jonas et al. (2003), among others. A parameterization of convection due
to solar heating (e.g. a parameterization based on a bulk model developed by Mironov et al.
2002) can, in principle, be incorporated into the present model. We do not do so, however,
considering that the major effect of convection beneath the ice is to redistribute heat in the
vertical and that it takes place over a very limited period of time.

3.5 Empirical Relations and Model Constants

3.5.1 The Shape Functions

In the lake model proposed by Mironov et al. (1991), a polynomial approximation of the
shape function with respect to the temperature profile in the thermocline was used. The
temperature-depth curve was assumed to be bounded by the two limiting curves given by
Eq. (5). The shape function Φθ(ζ) evolves towards the first line of Eq. (5) during the mixed-
layer deepening, and towards the second line of Eq. (5) during the mixed-layer stationary
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state or retreat. The corresponding limiting values of the shape factor Cθ are 0.75 and 0.6,
respectively. The adjustment of the temperature-depth curve occurs on a certain relaxation
time scale that was estimated on the basis of the similarity theory for stably stratified
turbulent flows (see Mironov et al. 1991 for details).

Recall that the approximations (5) are based on the observational data taken in the Baltic
Sea. Theoretical analysis of Zilitinkevich et al. (1988) also holds for the ocean or sea, where
the thermocline is underlain by a deep quiescent layer. Shallow and medium-depth lakes
usually have a two-layer temperature structure, where the thermocline extends from the
bottom of the mixed layer down to the basin bottom. Empirical data indicate a greater
variety of shapes of the temperature-depth curve in lakes than in the ocean or sea (Kirillin
2001a, 2001b). During the mixed-layer deepening, the dimensionless temperature gradient
just below the mixed layer-thermocline interface and the shape factor often exceed their
limiting values of Φ′θ(0) = 3 and Cθ = 0.75, respectively, suggested by the first line of
Eq. (5). These findings are corroborated by the theoretical analysis in Appendix A. Based
upon these empirical and theoretical findings, we allow a wider range of variation in Φθ.

We adopt the following polynomial approximation of the shape function Φθ(ζ) with respect
to the temperature profile in the thermocline:

Φθ =

(
40

3
Cθ −

20

3

)
ζ + (18 − 30Cθ) ζ

2 + (20Cθ − 12) ζ3 +

(
5

3
− 10

3
Cθ

)
ζ4. (55)

The shape factor Cθ is computed from

dCθ
dt

= sign(dh/dt)
Cmaxθ − Cminθ

trc
, Cminθ ≤ Cθ ≤ Cmaxθ , (56)

where trc is the relaxation time scale, and sign is the signum function, sign(x)=−1 if x ≤ 0
and sign(x)=1 if x > 0. The minimum and maximum values of the shape factor are set to
Cminθ = 0.5 and Cmax

θ = 0.8. The shape function Φθ(ζ) given by Eq. (55) is illustrated in
Fig. 5. As seen from the figure, the dimensionless temperature profiles lie in the area bounded
by the lower and the upper solid curves. During the mixed-layer deepening, dh/dt > 0, the
temperature profile evolves towards the limiting curve, characterised by a maximum value
of the shape factor, Cmax

θ = 0.8, and the maximum value of the dimensionless temperature
gradient at the upper boundary of the thermocline, Φ′θ(0) = 4. During the mixed-layer
stationary state or retreat, dh/dt ≤ 0, the temperature profile evolves towards the other
limiting curve, characterised by a minimum value of the shape factor, Cmin

θ = 0.5, and the
zero temperature gradient at the upper boundary of the thermocline, Φ′θ(0) = 0. Notice that
Cminθ = 0.5 is consistent with a linear temperature profile that is assumed to occur under
the ice when the bottom temperature is less than the temperature of maximum density (see
Section 3.4.3).

According to Eq. (55), the dimensionless parameter Cθθ defined through Eq. (31) is given by

Cθθ =
11

18
Cθ −

7

45
. (57)

The relaxation time trc is estimated from the following scaling arguments. The time trc
is basically the time of the evolution of the temperature profile in the thermocline from
one limiting curve to the other, following the change of sign in dh/dt. Then, a reasonable
scale for trc is the thermal diffusion time through the thermocline, that is a square of the
thermocline thickness, (D − h)2, over a characteristic eddy temperature conductivity, KH∗.
With due regard for the stable stratification in the thermocline, KH∗ is estimated from
Eqs. (14) and (16). Using a mean-square buoyancy frequency in the thermocline, N =
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Figure 5: The fourth-order polynomial approximation of the shape function Φθ(ζ)
with respect to the temperature profile in the thermocline. The curves are computed
from Eq. (55) with seven different values of the shape factor Cθ ranging from Cθ =
Cminθ = 0.5, lower solid curve, to Cθ = Cmaxθ = 0.8, upper solid curve, ∆Cθ = 0.05
apart.

[
(D − h)−1

∫D
h N2dz

]1/2
, as an estimate of N and assuming that the TKE in the thermocline

scales either on the convective velocity w∗, Eq. (34), or on the surface friction velocity u∗,
we propose

trc =
(D − h)2N

Crcu2
T

, uT = max(w∗, u∗), (58)

where Crc is a dimensionless constant estimated at 0.003 (this value may be altered as new
information becomes available).

We adopt the following polynomial approximations of the shape functions ΦB1(ζB1) and
ΦB2(ζB2) with respect to the temperature profile in bottom sediments (cf. Golosov et al.
1998):

ΦB1 = 2ζB1 − ζ2
B1, ΦB2 = 6ζ2

B2 − 8ζ3
B2 + 3ζ4

B2. (59)

which are the simplest polynomials that satisfy a minimum set of constraints. The conditions
ΦB1(0) = ΦB2(0) = 0 and ΦB1(1) = ΦB2(1) = 1 follow from the definition of ζB1, ζB2, ΦB1,
and ΦB2. The conditions Φ′B1(1) = Φ′B2(0) = Φ′B2(1) = 0 provide a zero temperature
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gradient at the depths z = H and z = L, and the condition Φ′′B2(1) = 0 follows from the
requirement that the temperature θL at the outer edge z = L of the thermally active layer
of the sediments is constant in time. The shape functions given by Eq. (59) are illustrated
in Fig. 6. The shape factors that correspond to Eq. (59) are CB1 = 2/3 and CB2 = 3/5.
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Figure 6: The polynomial approximations of the shape functions ΦB1(ζB1), solid
curve, and ΦB2(ζB2), dashed curve, with respect to the temperature profile in
bottom sediments. The curves are computed from Eq. (59).

As a zero-order approximation, the simplest linear temperature profile within snow and ice
can be assumed, ΦS(ζS) = ζS and ΦI(ζI) = ζI . This gives CS = CI = 1/2. Although a
linear profile is a good approximation for thin ice, it is likely to result in a too thick ice in
cold regions, where the ice growth takes place over a long period, and in a too high thermal
inertia of thick ice. A slightly more sophisticated approximation was developed by Mironov
and Ritter (2004) who assumed that the ice thickness is limited by a certain maximum value
Hmax
I and that the rate of ice growth approaches zero as HI approaches Hmax

I (the snow
layer over the ice was not considered). They proposed

ΦI =

[
1− HI

Hmax
I

]
ζI +

[
(2− Φ∗I)

HI

Hmax
I

]
ζ2
I +

[
(Φ∗I − 1)

HI

Hmax
I

]
ζ3
I , (60)

where Φ∗I is a dimensionless constant. The shape factor that corresponds to Eq. (60) is

CI =
1

2
− 1

12
(1 + Φ∗I)

HI

Hmax
I

. (61)

The physical meaning of the above expressions can be elucidated as follows. The relation
Φ′I(0) = 1 − HI/H

max
I that follows from Eq. (60) ensures that the ice growth is quenched
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as the ice thickness approaches its maximum value. Equation (61) suggests that the shape
factor CI decreases with increasing ice thickness. A smaller CI means a smaller relative
thermal inertia of the ice layer of thickness HI [the absolute thermal inertia is measured by
the term CIHI that enters the l.h.s. of Eq. (46)]. This is plausible as it is mostly the upper
part of thick ice, not the entire ice layer, that effectively responds to external forcing. For
use in the global numerical weather prediction model GME of the German Weather Service,
Mironov and Ritter (2004) proposed an estimate of Hmax

I = 3 m. This value is typical of
the central Arctic in winter. The allowable values of Φ∗I lie in the range between −1 and
5. Φ∗I > 5 yields an unphysical negative value of CI as the ice thickness approaches Hmax

I .
Φ∗I < −1 gives CI that increases with increasing HI . There is no formal proof that this
may not occur, but it is very unlikely. A reasonable estimate is Φ∗I = 2. With this estimate
CI is halved as HI increases from 0 to Hmax

I . Notice that the linear temperature profile is
recovered as HI/H

max
I � 1, i.e. when the ice is thin. The polynomial (60) is illustrated in

Fig. 7.
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Figure 7: The approximation of the temperature profile shape function ΦI(ζI)
given by Eq. (60). The curves are computed with Φ∗I = 2 and (from right to
left) HI/H

max
I = 0.01, HI/H

max
I = 0.25, HI/H

max
I = 0.5, HI/H

max
I = 0.75 and

HI/H
max
I = 1.0.

One further comment is in order regarding the shape functions Φθ, ΦB1, ΦB2, ΦS and
ΦI . These functions have been determined using a geometrical approach (the Pohlhausen
method). The essence of the approach is to use a polynomial approximation of the function
in question and to invoke a minimum set of physical constraints to determine the polynomial
coefficients. In spite of the utter simplicity of this approach, it often yields very accurate
results. Prominent examples are the boundary-layer similarity models developed by Long
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(1974) and Zilitinkevich (1989a, 1989b).

It should be stressed that, although the shape functions are useful in that they provide a
continuous temperature profile trough the snow, ice, water and bottom sediments, their exact
shapes are not required in the present model. It is not Φθ(ζ), ΦB1(ζB1), ΦB2(ζB2), ΦS(ζS)
and ΦI(ζI) per se, but the shape factors Cθ, CB1, CB2, CS and CI , and the dimensionless
gradients Φ′θ(0), Φ′B1(0), Φ′S(0), Φ′I(0) and Φ′I(1), that enter the model equations. The
estimates of these parameters are summarised in Table 1 (Appendix B).

3.5.2 Constants in the Equations for the Mixed-Layer Depth

The estimates of Cc1 = 0.2 and Cc2 = 0.8 in Eq. (35) were recommended by Zilitinkevich
(1991). They were obtained using laboratory, atmospheric and oceanic data. Apart from
being commonly used in mixed-layer models of penetrative convection driven by the surface
buoyancy flux, these values were successfully used by Mironov and Karlin (1989) to simulate
day-time convection in the upper ocean that is driven by surface cooling but inhibited by
radiation heating, and by Mironov and Terzhevik (2000) and Mironov et al. (2002) to simulate
spring convection in ice-covered lakes where convective motions are driven by volumetric
radiation heating of the water at temperature below the temperature of maximum density
(Mironov et al. 2002 used Cc2 = 1.0). A slightly modified estimate of Cc1 = 0.17 was obtained
by Fedorovich et al. (2004) from large-eddy simulation data. We adopt the estimates of
Cc1 = 0.17 and Cc2 = 1.0 for use in the equation of convective entrainment.

For use in Eq. (38) for the equilibrium mixed-layer depth in stable or neutral stratification,
we adopt the estimates of Cn = 0.5, Cs = 10 and Ci = 20 obtained by Zilitinkevich and
Mironov (1996). The estimates of Cs and Ci are based on a limited amount of data and
may need to be slightly altered as new (and better) data become available. The estimate of
Cn was corroborated by the results from further studies (Zilitinkevich and Esau 2002, 2003)
and is reliable.

The estimates of the dimensionless constant Crh in the relaxation-type rate equation for
the depth of a stably or neutrally stratified wind-mixed layer, Eqs. (36) and (37), are not
abundant. Kim (1976) and Deardorff (1983) recommended that the value of Crh = 0.28 be
used to describe entrainment into a homogeneous fluid. The same value was used by Zeman
(1979), and a slightly lower value of Crh = 0.26 by Zilitinkevich et al. (1979). The rate
equations given by Khakimov (1976) and Zilitinkevich et al. (2002) use the reciprocal of the
Coriolis parameter as the relaxation time scale. Their rate equations suggest the values of
Crh = 0.45 and Crh = 0.5, respectively. A similar form of the rate equation was proposed
earlier by Deardorff (1971) who used a much lower value of Crh = 0.025. We adopt an
estimate of Crh = 0.03 suggested by the sensitivity experiments with the present lake model
(keeping in mind that this value may need to be altered).

The estimates of dimensionless constants in the equations for the mixed-layer depth are
summarised in Table 1 (Appendix B).

3.5.3 Thermodynamic Parameters

The exponential approximation of the decay law for the flux of solar radiation is commonly
used in applications. It reads

I(t, z) = Is(t)

n∑

k=1

ak exp[−γk(z +HS +HI)], (62)
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where Is is the surface value of the solar radiation heat flux multiplied by 1−α, α being the
albedo of the water, ice or snow surface with respect to solar radiation, n is the number of
wavelength bands, ak are fractions of the total radiation flux for different wavelength bands,
and γk(z) are attenuation coefficients for different bands. The attenuation coefficients are
piece-wise constant functions of height, i.e. they have different values for water, ice and snow
but remain depth-constant within these media. The optical characteristics of water are lake-
specific and should be estimated in every particular case. Rough estimates of ak and γk for
ice and snow are given by Launiainen and Cheng (1998).

The lake model includes a number of thermodynamic parameters. They are summarised in
Table 2 (Appendix B). These thermodynamic parameters can be considered constant except
for the snow density and the snow heat conductivity that depend, among other things, on
the snow thickness and the snow age. As a first approximation, the following empirical
formulations (Heise et al. 2003) can be used that relate ρs and κs to the snow thickness:

ρs = min
{
ρmaxs , |1−HSΓρs/ρw|−1 ρmins

}
, (63)

where ρmins = 100 kg·m−3 and ρmaxs = 400 kg·m−3 are minimum and maximum values,
respectively, of the snow density, and Γρs = 200 kg·m−4 is an empirical parameter, and

κs = min
{
κmaxs , κmins +HSΓκsρs/ρw

}
, (64)

where κmins = 0.2 J·m−1·s−1·K−1 and κmaxs = 1.5 J·m−1·s−1·K−1 are minimum and maximum
values, respectively, of the snow heat conductivity, and Γκs = 1.3 J·m−2·s−1·K−1 is an
empirical parameter.

4 Conclusions

A lake model suitable to predict the vertical temperature structure in lakes of various depths
on time scales from a few hours to many years is developed. The model, termed FLake, is
based on a two-layer parametric representation of the evolving temperature profile and on
the integral budget of energy for the layers in question. The structure of the stratified layer
between the upper mixed layer and the basin bottom, the lake thermocline, is described using
the concept of self-similarity (assumed shape) of the temperature-depth curve. The same
concept is used to describe the temperature structure of the thermally active upper layer of
bottom sediments and of the ice and snow cover. An entrainment equation is used to compute
the depth of a convectively-mixed layer. A relaxation-type equation is used to compute the
wind-mixed layer depth in stable and neutral stratification, where a multi-limit formulation
for the equilibrium mixed-layer depth accounts for the effects of the earth’s rotation, of the
surface buoyancy flux, and of the static stability in the thermocline. Both mixing regimes
are treated with due regard for the volumetric character of solar radiation heating. Simple
thermodynamic arguments are invoked to develop the evolution equations for the ice and
snow depths. Using the integral (bulk) approach, the problem of solving partial differential
equations (in depth and time) for the temperature and turbulence quantities is reduced
to solving ordinary differential equations for the time-dependent parameters that specify
the evolving temperature profile. The result is a computationally efficient lake model that
incorporates much of the essential physics.

It must be emphasised that the empirical constants and parameters of FLake are not
application-specific. That is, once they have been estimated using independent empirical
and numerical data, they should not be re-evaluated when the model is applied to a par-
ticular lake. There are, of course, lake-specific external parameters, such as depth to the
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bottom and optical characteristics of water, but these are not part of the model physics. In
this way FLake does not require “re-tuning”, a procedure that may improve an agreement
with a limited amount of data and is sometimes justified. This procedure should, however,
be considered as a bad practice and must be avoided whenever possible as it greatly reduces
the predictive capacity of a physical model (Randall and Wielicki 1997).

Apart from the depth to the bottom and the optical characteristics of lake water, the only
lake-specific parameters are the depth L of the thermally active layer of bottom sediments
and the temperature θL at that depth. These parameters should be estimated only once
for each lake, using observational data or empirical recipes (e.g. Fang and Stefan 1998).
In a similar way, the temperature at the bottom of the thermally active soil layer and the
depth of that layer are estimated once and then used in an NWP model as two-dimensional
external-parameter arrays.

The proposed lake model is intended for use, first of all, in NWP and climate models as a
module (parameterization scheme) to predict the lake surface temperature. Apart from NWP
and climate modelling, practical applications where simple bulk models are favoured over
more accurate but more sophisticated models (e.g. second-order turbulence closures) include
modelling aquatic ecosystems. For ecosystem modelling, a sophisticated physical module is
most often not required because of insufficient knowledge of chemistry and biology.
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5 Appendices

Appendix A. Temperature Profile in the Lake Thermocline – A Self-Similar
Travelling Wave-Type Solution

In Section 2.3, a travelling wave-type self-similar solution to the heat transfer equation
obtained by Zilitinkevich et al. (1988) is discussed. These authors analysed the heat transfer
equation in the form

∂θ/∂t = −∂Q/∂z, (A.1)

where Q is the vertical turbulent temperature flux, subject to the boundary conditions

θ = θs at z = h, θ = θb at z = h+ ∆h. (A.2)

They assumed that the temperatures at the upper and lower boundaries of the thermocline
are constant, θs = const and θb = const, the mixed layer deepens at a constant rate,
dh/dt ≡ ḣ = const > 0, whereas the thickness of the thermocline does not change with time,
d∆h/dt = 0. Then, the heat transfer equation (A.1) takes the form

ḣdθ/dζ = dQ/dζ, (A.3)

where ζ = (z−h)/∆h is the dimensionless depth. In order to close the problem, Zilitinkevich
et al. (1988) used the down-gradient formulation for the temperature flux, Q = −KH∂θ/∂z,
and the expression KH = l2N for the effective temperature conductivity in the thermocline,
where l is the eddy length scale. Taking l = const, they invoked an additional condition
∂θ/∂z = 0 at z = h+ ∆h to determine l. The solution to the problem reads

Φθ = 1− (1− ζ)3, l = 3−3/4(β∆θ)−1/4∆h3/4ḣ1/2. (A.4)

The temperature profile shape function Φθ is given by the third-order polynomial in ζ.
This polynomial was developed earlier by Arsenyev and Felzenbaum (1977) on the basis of
simple geometrical arguments and by Mälkki and Tamsalu (1985) on the basis of data from
measurements in the Baltic Sea.

The Zilitinkevich et al. (1988) solution (A.4) is conditioned by the assumption d∆h/dt = 0.
This situation is illustrated in Fig. 8(a). It is characteristic of the ocean or sea, where the
mixed layer grows into a neutrally stratified deep quiescent layer, whereas the thickness of the
thermocline remains approximately unchanged. In lakes, the thermocline is usually pressed
against the basin bottom so that an increase of the mixed-layer thickness is accompanied by a
decrease of the thickness of the thermocline, dh/dt = −d∆h/dt. This situation is illustrated
in Fig. 8(b). With dh/dt = −d∆h/dt = const > 0, the heat transfer equation (A.1) takes
the form

ḣ(1− ζ)dθ/dζ = dQ/dζ. (A.5)

It is easy to verify that Eq. (A.5) subject to the same boundary conditions and closure
relations as used by Zilitinkevich et al. (1988) possesses a solution in the form

Φθ = 1− (1− ζ)5, l = 180−1/4(β∆θ)−1/4∆h3/4ḣ1/2. (A.6)

Equations (A.4) and (A.6) reveal a number of differences between the lake thermocline that
is pressed against the bottom and the ocean thermocline that is underlain by a deep neutrally
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stratified quiescent layer. The eddy length scale l characteristic of the lake thermocline is
(20/3)1/4 times smaller than l characteristic of the ocean thermocline. The temperature
profile in the lake thermocline is characterised by a sharper temperature gradient near the
thermocline top. The dimensionless temperature gradients at the top of the thermocline,
−(∆θ/∆h)−1(∂θ/∂z)|z=h ≡ Φ′θ(0), ∆θ = θs− θb being the temperature difference across the
thermocline, are Φ′θ(0) = 5 for the lake and Φ′θ(0) = 3 for the ocean. The temperature profile
shape factor is Cθ = 5/6 for the lake and Cθ = 3/4 for the ocean.

As Eq. (A.3) suggests, the self-similar oceanic thermocline is characterised by the shape
function Φθ ≡ (θs − θ)/(θs − θb) with respect to the temperature that coincides with the
shape function ΦQ ≡ (Qh −Q)/(Qh −Qb) with respect to the temperature (heat) flux. For
the lake thermocline, the relation between Φθ and ΦQ is more sophisticated. Equation (A.5)
yields

ΦQ(ζ) = C−1
θ

[
(1− ζ)Φθ(ζ) +

∫ ζ

0
Φθ(ζ

′)dζ ′
]
. (A.7)

The above relation suggests that the dimensionless shape-function parameters CQ, Cθθ and
Cθ defined by Eqs. (30), (31) and (24), respectively, are related through CQ = 2Cθθ/Cθ.
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Figure 8: Self-similar temperature profile during the mixed-layer deepening. (a) In a
neutrally stratified deep ocean, the mixed-layer depth increases, dh/dt > 0, whereas
the depth of the thermocline remains constant, d∆h/dt = 0. (b) In lakes, the
thermocline is pressed against the bottom, ∆h = D−h, so that dh/dt = −d∆h/dt.
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Appendix B. A Summary of Model Parameters

Table 1: Empirical Constants and Parameters

Constant/ Recommended Value/ Comments
Parameter Computed from

Cc1 0.17
Cc2 1.0
Cn 0.5
Cs 10
Ci 20
Crh 0.03
Crc 0.003
Cθ Eq. (56)
Cminθ 0.5
Cmaxθ 0.8
Cθθ Eq. (57)
CQ 2Cθθ/Cθ
CB1 2/3
CB2 3/5
CI 1/2 Optionally Eq. (61)
CS 1/2
Φ′θ(0) Eqs. (55) and (56)
Φ′B1(0) 2
Φ′I(0) 1 Optionally Eq. (60)
Φ′I(1) 1 Optionally Eq. (60)
Φ′S(0) 1
Φ∗I 2
Hmax
I 3 m
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Table 2: Thermodynamic Parameters

Notation Parameter Dimensions Estimate/
Computed from

g Acceleration due to gravity m·s−2 9.81
θr Temperature of maximum density K 277.13

of fresh water
θf Fresh water freezing point K 273.15
aT Coefficient in the fresh-water K−2 1.6509 · 10−5

equation of state
ρw Density of fresh water kg·m−3 Eq. (20)
ρr Maximum density of fresh water kg·m−3 1.0 · 103

ρi Density of ice kg·m−3 9.1 · 102

ρs Density of snow kg·m−3 Eq. (63)
Lf Latent heat of fusion J·kg−1 3.3 · 105

cw Specific heat of water J·kg−1·K−1 4.2 · 103

ci Specific heat of ice J·kg−1·K−1 2.1 · 103

cs Specific heat of snow J·kg−1·K−1 2.1 · 103

κw Molecular heat conductivity of water J·m−1·s−1·K−1 5.46 · 10−1

κi Molecular heat conductivity of ice J·m−1·s−1·K−1 2.29
κs Molecular heat conductivity of snow J·m−1·s−1·K−1 Eq. (64)
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driven convection in an ice covered lake using temperature microstructure technique. J.
Geophys. Res., 108, 14-1–14-18.

Kamenkovich, V. M., and B. V. Kharkov, 1975: On the seasonal variation of the thermal
structure of the upper layer in the ocean. Okeanologia, 15, 978–987.

Khakimov, I. R., 1976: The wind profile in the neutrally stratified atmospheric boundary
layer. Izv. Akad. Nauk SSSR. Fizika Atmosfery i Okeana, 12, 628–630.

Kharkov, B. V., 1977: On the structure of the upper ocean layer. Okeanologia, 17, 37–43.

Kim, J.-W., 1976: A generalized bulk model of the oceanic mixed layer. J. Phys. Oceanogr.,
6, 686–695.

Kirillin, G., 2001a: On self-similarity of thermocline in shallow lakes. Proc. 6th Workshop
on Physical Processes in Natural Waters, X. Casamitjana, Ed., University of Girona,
Girona, Spain, 221–225.

Kirillin, G., 2001b: On a self-similarity of the pycnocline. Proc. 2001 International Sympo-
sium on Environmental Hydraulics, Arizona State University, Tempe, Arizona, USA.

Kitaigorodskii, S. A., 1960: On the computation of the thickness of the wind-mixing layer
in the ocean. Izv. AN SSSR. Ser. geofiz., No. 3, 425–431.

Kitaigorodskii, S. A., 1970: The Physics of Air-Sea Interaction. Gidrometeoizdat, Leningrad,
284 p. (In Russian. English translation: Israel Progr. Scient. Translation, Jerusalem,
1973, 236 p.)

Kitaigorodskii, S. A., and S. M. Joffre, 1988: In search of simple scaling for the heights of
the stratified atmospheric boundary layer. Tellus, 40A, 419–433.

Kitaigorodskii, S. A., and Yu. Z. Miropolsky, 1970: On the theory of the open ocean active
layer. Izv. Akad. Nauk SSSR. Fizika Atmosfery i Okeana, 6, 178–188.

Kondratiev, S. A., S. D. Golosov, K. D. Kreiman, and N. V. Ignatieva, 1998: Modelling
hydrological processes and mass transfer in a watershed-lake system. Water Resources
(Vodnye Resursy), 25, 571–580.

Kraus, E. B., and C. Rooth, 1961: Temperature and steady state vertical heat flux in the
ocean surface layer. Tellus, 13, 231–238.

Launiainen, J., and B. Cheng, 1998: Modelling of ice thermodynamics in natural water
bodies. Cold. Reg. Sci. Technol., 27, 153–178.

León, L. F., D. Lam, W. Schertzer, and D. Swayne, 2005: Lake and climate models linkage:
a 3-D hydrodynamic contribution. Advances in Geosciences, 4, 57–62.

León, L. F., D. C. L. Lam, W. M. Schertzer, D. A. Swayne, and J. Imberger, 2007: Towards
coupling a 3D hydrodynamic lake model with the Canadian Regional Climate Model:
Simulation on Great Slave Lake. Environ. Modell. Softw., 22, 787–796.



COSMO Technical Report No. 11 38
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